

Compiling a task-based qualification framework for general circular skills in the construction

value chain

Issue Date 9-6-2022

Version: 1.0

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101033740. The contents of this report reflect only the author's view and the Agency and the Commission are not responsible for any use that may be made of the information it contains.

Compiling a task-based qualification framework for general circular skills in the construction

value chain

Lead partner	ISSO
Issue Date	7-6-2022
Produced by	ISSO
Main author	Carmen Poort, ISSO
Co-authors	Jan Cromwijk, ISSO
Version	Final
Reviewed by	Joel Marsden, Circle Economy
Approved by	Jan Cromwijk, ISSO
Dissemination level	Public

Revision and history chart

Version	Date	Editors	Comment Description
0.1	14-4-2022	Carmen Poort, ISSO	Initial draft
0.1	25-2-2022	Jan Cromwijk, ISSO	Review of Initial Draft
0.2	29-4-2022	Carmen Poort, ISSO	Changes in order of components, adjustments to information about sister projects
0.3	3-5-2022	Layla van der Schaaf, ISSO	Review of document with focus on general readability and comprehension, visuals for methodology added
0.3	13-5-2022	Joel Marsden, Circle Economy	Review of document with particular focus on quality of the framework with regards to the 8 Key Elements
0.4	30-5-2022	Carmen Poort, ISSO	Final version, feedback from reviews has been processed
1.0	9-6-2022	Jan Cromwijk, ISSO	Final version approved

Publishable executive summary

Within the BUS-GoCircular project, a **general task-based qualification framework** was developed for **circular skills in construction**, meaning a set of tasks and corresponding learning outcomes were mapped and connected to relevant professions throughout the construction value chain. By doing so, the project offers a practical interpretation of the *Key Elements of the Circular Economy*, made applicable to the construction sector.

Results consist of two tables. The first contains tasks and subtasks; the 9 tasks are the practical equivalents of the *Key Elements*, and the 60 subtasks further specify strategies to implement circularity in construction. These subtasks are connected to professions on the one hand, and so-called Units of Learning Outcomes (ULOs) on the other. The second table specifies the 80 ULOs. This segment of the results states the specific learning outcomes one should reach if circular strategies are to be implemented. They are broken up into competencies, skills, and knowledge components.

The methodology that was employed to establish these results, has been developed and validated throughout several previous (and ongoing) large-scale European projects. It has several advantages, one of which is the practical perspective it offers on required skills in the value chain, and required overlaps between actors.

The qualification framework results were developed with the use of various inputs. The main foundation of the work is the *framework for circular interventions*, which was previously compiled in the BUS-GoCircular project. Other resources were also used to ensure that circular skills for renewable energy sources, energy efficiency, and digitalisation were included.

Next steps for the general qualification framework for circular construction skills, are firstly for the work to be validated by market stakeholders. Then, it will be used within the BUS-GoCircular project to develop train-the-trainer and mentoring programmes for circular construction skills in Europe. In the near future, learning outcomes from the framework will also be added to the BUILD UP Skills Advisor app, to further increase skills recognition for professionals and craftsmen.

List of acronyms and abbreviations

ULO: Unit of Learning Outcome EE: Energy Efficiency EQF: European Qualification Framework RES: Renewable Energy Sources KE: Key Elements BIM: Building Information Modelling RFID: Radio Frequency Identification VOC: Volatile organic compound (emissions)

Definitions

Building stages & RIBA: A building life-cycle consists of several stages. The <u>RIBA Plan of</u> <u>Work</u> is the definitive UK model for the building design and construction process.

Circular economy: The circular economy offers the next progressive step in our economic model, taking over from the current linear 'take-make-waste' economy by seeking to extract the maximum value from resources in use and keep materials in circulation for as long as possible through processes like reuse, repair, remanufacture and recycling. The ultimate goal of a circular economy is to establish an ecologically safe and socially just operating

Competence: The ability of an individual/organisation to do something effectively.

It consists of a cluster of attitude, related abilities, commitments, knowledge, and skills that enable a person (or an organisation) to act effectively in a job or situation.

The competence description is always worded as a result somebody can take responsibility for. Competence addresses 'responsibility and autonomy'. It is the ability of the learner to apply knowledge and skills autonomously and with responsibility.

European Qualification Framework (EQF): Common European reference framework with the purpose of making qualifications more readable and understandable across different countries and systems. (COUNCIL RECOMMENDATION of 22 May 2017 (2017/C 189/03))

Key elements framework: The Circle Economy Key Elements (KE) framework is a conceptual framework of eight elements of circularity that can be applied at different intervention levels (for example, national, regional, sector, business, product, process, or material) towards a circular economy. The KE framework consists of three core elements and five enabling elements. Core elements deal with physical flows directly, whilst enabling elements deal with creating the conditions or removing barriers, for a circular transition¹.

The three core key elements are:

1. Prioritise regenerative resources: Ensuring that renewable, reusable, non-toxic resources are used in the manufacturing of built environment. Ensuring that all resources are used in an efficient way.

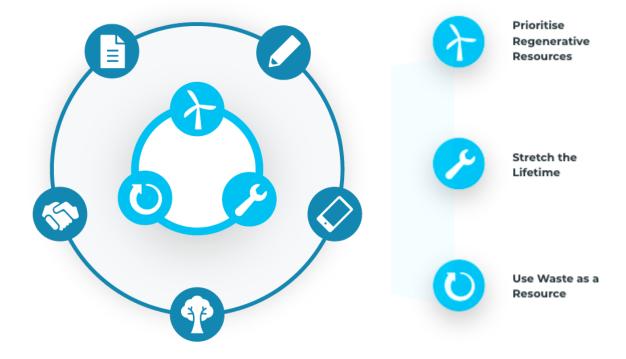
¹ Circle Economy, 2021.

https://www.circle-economy.com/resources/the-key-elements-of-the-circular-economy-framework

2. Preserve and extend what is already made / Stretch the lifetime: While resources are in-use, maintain, repair and upgrade them to maximise their lifetime and give them a second life through take back strategies when applicable.

3. Use waste as a resource: Utilise waste streams as a source of secondary resources and recover waste for reuse and recycling.

The five enabling key elements are:


1. Design for the future: Account for the systems perspective during the design process, to use the right materials, to design for appropriate lifetime and to design for extended future use.

2. Collaborate to create joint value: Work together throughout the supply chain, internally within organisations and with the public sector to increase transparency and create joint value.

3. Rethink the business model: Consider opportunities to create greater value and align incentives that build on the interaction between products and services.

4. Incorporate digital technology: Track and optimise resource use and strengthen connections between supply chain actors through digital, online platforms and technologies that provide insights.

5. Strengthen and advance knowledge: Develop research, structure knowledge, encourage innovation networks and disseminate findings with integrity.

Knowledge: 'Knowledge' is the body of facts, principles, theories, and practices that is related to a field of work or study.

Know-how you need to know by 'head' in order to perform a task as efficiently and effectively as possible.

In the context of the EQF, knowledge is described as theoretical and/or factual.

Profession: A profession is a specialised occupation characterised by profession specific education and training.

Qualification: A pass of an examination or an official completion of a course, especially one conferring status as a recognized practitioner of a profession or activity.

Skill: Something a person needs to be able to do/perform in order to reach a certain result.

To have a 'skill' or to be 'skillful' signifies the ability to use know-how to complete tasks and solve problems. These can be cognitive (involving the use of logical, intuitive and creative thinking) or practical (involving manual dexterity and the use of methods, materials, tools and instruments).

Ability to apply knowledge and use know-how to complete tasks and solve problems. In the context of the EQF, skills are described as cognitive (involving the use of logical, intuitive and creative thinking) or practical (involving manual dexterity and the use of methods, materials, tools and instruments).

Subtask: An activity that is part of a certain task at a subordinate level. Individual subtasks can be linked to multiple tasks.

Task: A piece of work / an activity to be done or undertaken.

Task-based qualifications A qualification framework in which tasks and subtasks are set up and connected to a) relevant professions and b) learning outcomes in the specific form of Unit of Learning Outcomes

Unit of Learning Outcome (ULO): The 2008 EQF recommendation defines learning outcomes as '...statements of what an individual should know, understand and/or be able to do at the end of a learning process'. ULO's are statements regarding what a learner knows, understands and is able to do on completion of a learning process, which are defined in terms of knowledge, skills and attitude (reflected in responsibility and autonomy).

Table of Contents

Introduction	1
Results	4
Approach	25
Task-based qualifications	25
Previous applications	27
Added value	28
Knowledge input for the Circular Construction Skills Qualification Framework	28
Framework for circular interventions	29
Additional resources	30
Process	31
Collaboration and use of expertise	31
Decision-making	31
Future developments and applications	32
References	32
Appendix I - Professions acronyms	

List of Figures

Figure 1: The Key Elements of the Circular Economy in the context of BUS-GoCircular.	1
Figure 2: Objectives of the BUS-GoCircular project.	2
Figure 3: Overview of the main elements of the circular construction skills qualificat framework.	tion 4
Figure 4: Overview of the results of circular construction skills qualification framework - F 1, 9 tasks.	Part 5
Figure 5: Overview of the results of circular construction skills qualification framework - F 2, ULOs.	Part 5
Figure 6: Overview of the methodology	25
Figure 7: Relationship tasks, subtasks, ULO's and professions	26
Figure 8: Elements of ULOs	26
Figure 9: Circular interventions identified for the first strategy group of the first key elemen	t27

List of Tables

Table 1 List of Tasks and subtasks, including corresponding ULO numbers and professions 4Table 2 Unit of Learning Outcomes, consisting of competences, skills, and knowledgecomponents8

1.Introduction

In the built environment, a lot can be done about the major contributions of the sector to environmental degradation. A circular approach to construction, from planning and design to end-of-life, can reduce much of the energy consumption, greenhouse gas emissions, use of extracted materials, and the amount of waste generated by the built environment. By carrying out circular economy interventions throughout each stage of the construction value chain, environmental impact and life cycle costs can be lowered, and resource depletion can be prevented.² In addition, local environmental impacts can be reduced, such as nitrogen surpluses, stress on nature and biodiversity, and pollution.³

Figure 1. The Key Elements of the Circular Economy in the context of BUS-GoCircular.

Within BUS-GoCircular, a general circular construction skills qualification framework has been developed. The current deliverable explains the results of this development. In the

² BUS-GoCircular D2.1 Framework for circular interventions in the construction value chain. <u>https://busgocircular.eu/framework-for-circular-interventions-in-the-construction-value-chain/</u>

³ Trinomics, 2018. Quantifying the benefits of circular economy actions on the decarbonisation of EU economy: Final report.

http://trinomics.eu/wp-content/uploads/2020/04/Trinomics-2018-Quantifying-the-benefits-of-circular-ec onomy-actions-on-the-decarbonisation-of-EU-economy_final-report.pdf

Circle Economy, 2021. Three ways circular construction can strengthen biodiversity efforts. <u>https://medium.com/circleeconomy/three-ways-circular-construction-can-strengthen-biodiversity-effort</u> <u>s-bfc632061715</u>

framework, tasks that are required for ensuring circularity in construction are mapped and connected to a) corresponding professions and b) corresponding learning outcomes. This will give hands-on insight into who needs to develop which competences, to be able to create a circular built environment.

The generation of the general circular construction skills qualification framework has multiple purposes. Firstly, within the BUS-GoCircular project, the qualification framework will be used as input for setting up the Train-the-Trainer- and mentoring programmes, as well as the fundamentals training packs (See Figure 2). Second, the qualification framework will be used for extending the BUS-Advisor app, enriching skills repositories, and connecting skills and skill sets to relevant upskilling and eLearning opportunities. The availability of a set of general qualifications for circular construction can be used for reaching recognition of skills across countries. In order to test the applicability of the framework to specific fields in construction, it will be applied to the subject of multifunctional green roofs, façades, and interior elements.

Earlier in the BUS-GoCircular project, the consortium established a *Framework for circular interventions in the construction value chain.*⁴ This was a research and gathering of opportunities for circular approaches that can be applied to the built environment. The *Key Elements of the Circular Economy* framework⁵ had guided the investigation, with its three 'core elements' and five 'enabling elements' (See Figure 1). Both the framework for circular interventions, and the key elements framework, have guided the work that is to be elaborated upon in the current deliverable.

First, the *general circular construction skills qualification framework* will be presented in two tables. These are the results.Second, the approach for development of the qualifications is elaborated upon, including more information about the methodology, previous applications of the methodology, and added value. This paragraph also explains what resources have been used as knowledge input for the qualification framework. Third, insight is provided into the process of developing the qualification framework within the consortium. It is also explained which important decisions have been made. Lastly, the deliverable mentions future

⁴BUS-GoCircular D2.1 Framework for circular interventions in the construction value chain. <u>https://busgocircular.eu/framework-for-circular-interventions-in-the-construction-value-chain/</u> ⁵ Circle Economy. Key elements of the circular economy.

https://knowledge-hub.circle-lab.com/circular-jobs-initiative/frameworks/9?n=Key-elements-of-the-circ ular-economy

developments and applications of the BUS-GoCircular general construction skills qualification framework.

Figure 2. Objectives of the BUS-GoCircular project.

2.Results

By using the methodology of developing task-based qualifications, and employing the *Framework for circular interventions* as a main foundation, the circular construction skills qualification framework has been developed. The qualification framework consists of a list of 9 tasks with subtasks. Each subtask is linked to corresponding Unit of Learning Outcome (ULO) numbers and relevant professions. This information can be found in Table 1. The 70 Units of Learning Outcomes (ULOs) are written up in Table 2. The structure of the full framework is depicted in Figure 3 and 4. ULOs, then, consist of a set of competences, skills, and knowledge components (See Figure 5). The full names of professions that are referred to in Table 1 can be found in Appendix I.

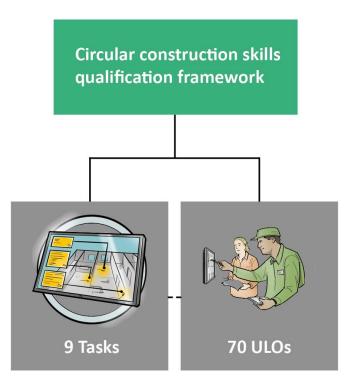


Figure 3. Overview of the main elements of the circular construction skills qualification framework.

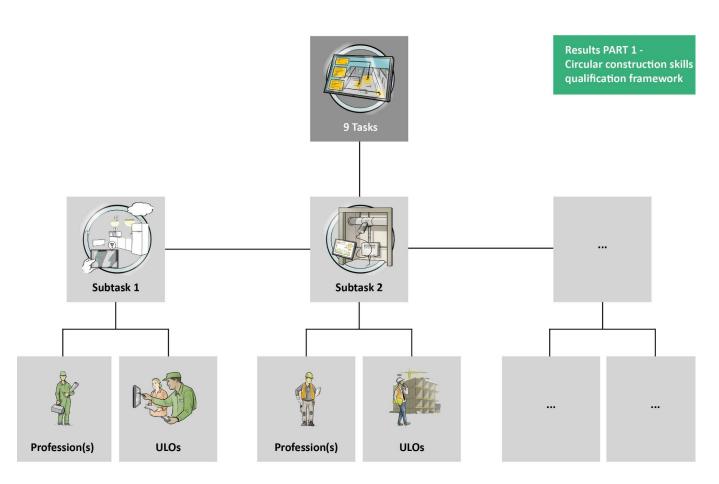


Figure 4. Overview of the results of circular construction skills qualification framework - Part 1, 9 tasks.

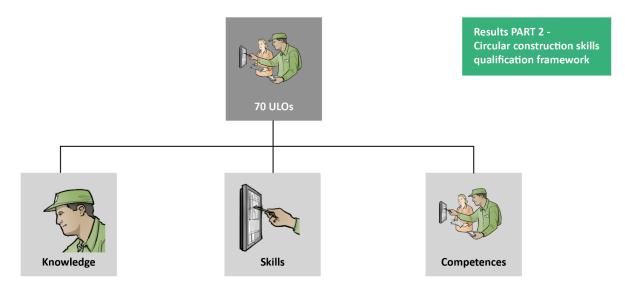


Figure 5. Overview of the results of circular construction skills qualification framework - Part 2, ULOs.

Table 1: List of Tasks and subtasks, including corresponding ULO numbers and professions

#	Task	Subtask	ULO Nr.	Profession(s)
1	Prioritise	regenerative and efficient use of resources	81	
1.1		Design with bio-based, non-toxic and/or non-critical materials	1, 2, 3, 4	AM, UP, AR, CE, ME, EE, C, MS
1.2		Replace energy sources with less impactful alternatives	8	AR, EL, EE, PM, MS
		Apply suitable energy efficiency measures to the building design	9	AR, EL, EE
1.3		(taking into account building purpose and climate)		
1.4		Generate energy from renewable sources - e.g. solar, sustainable biomass	10	AR, EL, EE
1.5		Apply measures that replace freshwater with less impactful alternatives	6	R, Gd, P, El
1.6		Enact water efficiency measures	7,15	R, Gd, P, El
1.7		Source bio-based, reusable, non-toxic and non-critical materials	1, 2, 3, 4, 5, 36	PM, MS
1.8		Source local and lightweight materials	74	PM, MS
2	Design fo	or the future	81	
2.1		Design to reduce waste during production and use	2, 26, 27, 28	AR, CE, ME, EL
2.2		Design with materials that enable multiple uses	5	AR, CE, EL, ME, HS, BS
2.3		Design buildings and installations that are made to last and to ensure longer use	31	AR, CE, EL, ME
2.4		Design products and building structures to enable reuse and recycling	29	AR, CE, EL, ME, HS, BS
2.5		Design products and building structures that make repair accessible	30	AR, CE, EL, ME, HS, BS
2.6		Design with use of pre-fabricated solutions	26	AR, CE, EL, ME
2.7		Design modular construction solutions	28	AR, CE, EL, ME, HS, BS
2.8		Design using secondary materials not initially intended for reuse	1, 14, 20, 23, 55, 78	AM, UP, AR, CE, ME, EE, C, MS
2.9		Design to use and store energy more efficiently in buildings	24	AR, EL, EE

2.10	Compile and provide deconstruction / demolition specifications	59	AR, CE, EL, ME, HS, BS
-	at the commissioning stage		
3	Assemble / construct for the future	15	
3.1	Install energy efficiency measures in buildings	56	II, WI, EI, RESI, RWT, HPI, VI
3.2	Install renewable energy systems in buildings	63	II, WI, EI, RESI, RWT, HPI, VI
3.3	Reduce waste during production and construction	58	Br, II, FM, FW, R, WI, BA
3.4	Build modular structures	60	Br, II, FM, FW, R, WI, BA, P
3.5	Build with bio-based, reusable, non-toxic and non-critical materials	68	C, CE, ME, SS, Br, II, FM, BA
4	Rethink the business model		
4.1	Construct building components according to service business models	15, 60, 62	C, CE, ME, BS, Br, II, FM, FW, R, WI, BA
4.2	Offer construction maintenance and repair services	43,64	RM
4.3	Provide building and installation components as a service	42	PD, RM
4.4	Offer different leasing and rental models to provide access rather than ownership	44	PD, RM
4.5	Incentivise the renovation of un- or under-used buildings	45	C, BS, FaM, PA, AM
5	Stretch the lifetime	81	
5.1	Manage and preserve biological products on construction site	15, 17	C, CO, RM, FW
5.2	Maximise lifetime of products in-use	11, 12, 13, 57	AR, RM, DA, BO
5.3	Repair (active maintenance) existing structures and installations	15, 64	RM, EI, FM, FW, PHI, II, P, RESI, RM, RWT, VI, WI
5.4	Operate the building in a clever and adaptive manner that optimises sustainability and circularity	76, 77	FaM
5.5	Maximise lifetime of products after use	14,16	DeA, DeL, RM
5.6	Adaptive reuse of existing buildings for a new purpose	66	DeA, DeL, AR, CE
6	Use secondary resources		

6.1	Reuse, repurpose or recycle secondary	18,20	PM, PD
	materials/components/resources from the same industry		
6.2	Reuse, repurpose or recycle secondary	21, 23	PM, PD
	materials/components/resources from other industries		
6.3	Organise logistics and storage of secondary materials	46, 48, 73	C, PM, HS, DeA
6.4	Assess the quality of materials to be reused (audit of waste)	78	DeA, MS
6.5	Transform waste streams for reuse, repurpose, or recycle waste streams within the same industry (closed loop)	19	DeA, DeL, CE, SC, AR
6.6	Transform waste streams for reuse, repurpose, or recycle waste	22	DeA, DeL
	streams within other industries (open loop)		
6.7	Organise and provide guarantees for reused materials	47, 73, 82	C, CE, ME, EE, FdE
6.8	Disassemble modular structures	15, 65	AR, DeA, DeL, HS
7	Incorporate digital technology		
7.1	Employ digital marketplaces to improve circular allocation of	48	DA
	resources between stakeholders		
	Employ material passports throughout each phase of the	47	AR, CE, C, HS, DA, FM, BS
7.2	building/project		
7.3	Employ technologies to gather and analyse data to provide and	46, 47	DA
	gain insights on resource use at each stage of the life cycle		
7.4	Trade secondary materials and products on digital marketplaces	16, 48, 79	MS, PM, PD
7.5	Use drones and imaging technologies to collect data about the	84	DA, HS
	building and analyse the building for renovation		
7.6	Apply Building Information Modelling (BIM) practices to building	57	DA, AR, CE, C, HS, BS
	projects in order to aid circular applications		
8	Collaborate to create joint value		
8.1	Put in place purchasing guidelines for procurement departments	34	PA, PM, GPPA
8.2	Engage internally to guide employees and facilitate greater	32, 33	Senior management of company in

	knowledge sharing between internal divisions		construction value chain
8.3	Collaborate with industry peers to create joint value and identify synergies	34, 35	ME, CE, AR, PM, HS
8.4	Engage and guide customers and users to ensure circular use of buildings and products	37, 38	PD, PA, II, HPI, AR, BEC, RESI, RWT, VI, P, EI, FM, SC
8.5	Engage with local communities where buildings are located	12, 41	AR, PA, AM, PD
8.6	Engage with governments on circular economy policies and programmes	39, 40	AM, AR, FaM, PA, PM, PD, GPPA
8.7	Redefine building regulations to incentivise circular approaches in construction	80	PA
9	Strengthen and advance knowledge		
9.1	Educate construction clients on suitable construction and renovation options	53, 54	PA, BEC, FaM, BO, AM, AR
9.2	Engage and guide customers and users to ensure circular use of buildings and products	37, 38, 75	PA, BEC, FaM, BO, AM, AR
9.3	Raise awareness about secondary construction components and materials, and reconstructed buildings	53, 55	PA, BEC, FaM, BO, AM, AR
9.4	Integrate principles of circularity into school curricula	49	PA
9.5	Conduct workplace trainings on circular construction	49, 50	AR, CE, C, ME, EE, PM etc.
9.6	Solidify definitions and create frameworks to support understanding of circular construction	39, 51	PA, BEC, FaM, BO, AM, AR
9.7	Develop and conduct research about applied circular construction strategies	52, 82	AR, PA, EL, ME, CE, EE
9.8	Conduct post occupancy survey and analysis	77	BO, HS, FaM
9.9	Increase (access to) understanding of non-conventional construction materials	34, 47, 82, 83	AR, MS, ME, CE, EE, UP, AM, C
9.10	Evaluate and assess the life cycle impacts of buildings,	25	AR, EE, SC, BEC, CO, GPPA

	construction products and materials on the environment		
	(emissions, soils, water, biodiversity, etc.)		
9.11	Conduct a feasibility study for the new built or renovation project	61	AM, AR, C, PD
	at hand		

 Table 2: Unit of Learning Outcomes, consisting of competences, skills, and knowledge components

ULO Nr.	Competence	Skills	Knowledge
1	Design with bio-based materials as an	Select bio-based materials for the construction	Types of bio-based materials in construction
	alternative for conventional construction	project at hand	such as hemp, seaweed, cork, bamboo,
	materials	Consider the purpose of the building and the	sustainably sourced wood, agricultural residues
		context of the entire building solution, as well as	Advantages and disadvantages of biobased
		construction requirements	materials
		When biobased materials are not an option, select	Seven functional requirements of building walls
		low impact materials	Alternative forms of concrete
		Integrate use of the Material Circularity Indicator	
		(make sure it is not higher than X)	
		Ensure use of materials that have little to no	
		volatile organic compound (VOC) emissions	
2	Enact measures that optimise material	Apply measures that optimise material use to	General knowledge about measures that
	use to strive for material efficacy	construction projects	optimise material use in construction, such as 3D
		Combat underutilisation or surplus of materials by	printing or accurate structural design/
		sharing products or assets and optimising their	industrialised prefabricated products
		use	
3	Design with non-critical raw materials as	Avoid, insofar as possible, use of critical raw	Types of non-critical raw materials as defined by
	defined by the EU	materials as defined by the EU while selecting	the EU

		materials for a project	
4	Design with non-toxic materials as defined	Avoid, insofar as possible, use of chemicals as	Types of non-toxic construction materials, such
	by the EU	defined by EU while selecting materials for a	as alternatives to anti-flame retardants used on
		project	wood
5	Design with products and materials that	Recognise and select materials that can be easily	Reusable and/or recyclable materials, such as
	can be easily reused or recycled after use	reused or recycled after the building's	glass, plasterboard, steel, gravel (aggregates),
		end-of-lifetime	rammed earth walls
		Recognise and avoid composites or other mixed	Recycling requirements for specific products
		materials that are then hard to recycle/repurpose	and materials for safety and functionality (and
			regional/local infrastructure capacity)
6	Replace freshwater use with alternative	Use alternative water source applications that are	Alternative water sources such as rainwater,
	water sources	suitable for the project at hand	fogwater, seawater, grey water etc.
		Harvest greywater and rainwater for certain	Which building applications are suitable for
		applications	applying alternative water sources
		Design sustainable drainage systems	Sustainable drainage systems
7	Enact measures that optimise water use	Apply plant-based biofilters/ phytopurification	Sustainable water technology
	for water efficiency	Collect and reuse of water in humid interior areas	Plant-based biofilters to purify wastewater
		(e.g. cellars)	Criteria for reuse of water
		Create water cascading systems	Cascading water for efficiency
		Harvest greywater and rainwater for certain	
		applications	
8	Select sources with less impact to apply to	Select best energy solution that is less impactful	Fossil fuel based operations vs. electric
	operations in buildings	based on current situation in country (e.g. convert	operations
		fossil fuel based operations to electric)	Renewable fuels, such as biomass
			How circular economy works with regards to
			materials and sources, renewability
			Current state of affairs and regulations with
			regards to energy sources

			Options like waste heat/district heating
9	Enact measures that reduce and optimise	Include energy efficiency measures in design	Smart solutions to spread demand throughout
	energy use	Include passive design techniques in design	the day
			Measures such as draught-proofing,
			airtightness, insulation, ventilation
			Materials with lower thermal conductivity (e.g.
			sheep's wool, cellulose, earthwool)
10	Generate energy or heat/cold from	Include renewable energy technologies in building	Options for renewable energy, e.g. solar/PV
	renewable sources in building design	design	panels, solar thermal collectors, heat pumps,
			waste water heat recovery
			Systems that generate power or heat/cold
11	Provide repair services or maintenance	Renovate buildings or parts of buildings to	Renovation techniques
	services for building components	maximise their lifetime	Renovation of bio-based, non-critical and
		Conduct regular checks for built structures	non-toxic materials
12	Provide upgrade programmes or upgrade	Educate home-owners and facility managers on	Which (local) organisation can help upgrade
	services for building components	the possibilities of upgrading building components	building components
		Provide upgrade services	Upgradeability of the building components at
			hand
13	Provide DIY repair kits or spare part	Describe information about how to repair and	DIY techniques for repair and maintenance
	programmes for enabling self-repair	maintain building components to building users	
		and facility managers	
14	Extract and reuse parts from end-of-life	Dismantle built structures whilst maintaining value	Dismantling for re-use
	products for use in new buildings	of products and materials	Detachable construction details
		Read construction details for detachability of	
		building components	
15	Arrange a safe working environment and	Arrange a safe working environment at the	Health and safety requirements specific to
	continuously consider health and safety	construction site	biobased and secondary materials (construction)
	requirements	Consider health and safety requirements	Requirements specific to renewable energy

		Assure sufficient environmental air quality	technologies and smart solutions (installation) Hazards of certain materials and their compositions
	Enable second hand sale of products through marketplaces or services	Make use of (digital) marketplaces to find a new use for disassembled materials (construction) Make use of (digital) marketplaces to find a new use for disassembled products and parts of products (installation)	Potential new purposes for construction materials and products
	Manage and preserve biological products on the construction site to stretch the lifetime materials	Preserve and manage biological products	Preservation and management of biological products on site Periodic treatment and maintenance of wood, straw and other bio-based materials used for the building.
	Collect products and materials for reuse or recycling from the construction industry	Source demolition materials for construction of new structures Select waste products and materials for construction of new structures Prioritise local demolition materials to save resources Use digital marketplaces to collect products and materials	Usable and suitable waste products and materials Allocation of local demolition materials Collection programmes that process materials for reuse or recycling within the construction sector Closed loop waste streams
	Transform waste products and materials for reuse or, as a last resort into lower value products, in the same industry	Transform demolition materials into products that can be used in new built projects Conduct activities to clean and restore products back to working condition for original or new purposes	Upcycling methods Closed loop waste streams Cleaning, documentation, refurbishment or any physical/chemical treatment to allow reuse Strategies to clean and restore products and materials
20	Use waste products and materials from	Reuse demolition materials as a resource for new	Different functions for waste materials in new

	construction demolition projects that have	huildinge	building
		-	
	been processed and recycled		Closed loop waste streams
	Collect products and materials for reuse or	Source demolition materials for construction of	Usable and suitable waste products and
	recycling from outside construction	new structures Select waste products and	materials
		materials for construction of new structures	Collection programmes that process materials
		Use digital marketplaces to collect products and	for reuse or recycling outside the construction
		materials	sector
			Open loop waste streams
22	Transform waste products and materials	Use demolition materials as resources for other	Open loop waste streams
	for reuse outside construction or, as a last	purposes or products outside construction	Strategies to clean and restore products and
	resort into lower value products, outside	Separate waste created during construction	materials
	construction	Conduct activities to clean and restore products	
		back to working condition for original or new	
		purposes	
23	Use waste products and materials from	Reuse materials as a resource in new built projects	Open loop waste streams
	outside construction that have been		For example recycling PVC cables into floors
	processed and recycled		
24	Enact measures to use and store energy	Employ batteries for storing renewable electricity	Storage of heat and cold, storage of excess
	more efficiently in buildings	produced	power
		Utilise a thermal tank to store excess hot water	
		stored on site	
		Make use of phase change materials to store	
		excess heat or cold.	
25	Evaluate and assess life cycle impacts of	Apply a lifecycle assessment tool to evaluate the	e.g. One ClickLCA tool
	buildings, construction products and	embodied energy and carbon footprint of a new	Awareness of new circular economy legislation
	materials on the environment (emissions,		as is currently passing through Irish parliament
	soils, water, biodiversity, etc.)	building	
	Design buildings and building components		Prefabrication (incl. relevant software)
			· · · · · · · · · · · · · · · · · · ·

	for prefabrication so that as little waste as	If applicable, 3D print building components	Alternative prefabrication methods such as 3D
	possible is produced during construction	Use CNC and/or robotics for prefabrication	printing (incl. digital rendering)
			Sustainable insulation materials in prefabricated
			walls
27	Design products so they use as little	Reduce the consumption of total raw materials	How to minimise raw material use for
	materials, water, energy, etc. as possible	needed for construction	construction project
	during use phase	Consider resource efficiency for design of all life	
		cycle stages (e.g. minimum energy consumption	
		during use phase)	
28	Design modular structures so that	Design modular structures	Why custom made structures should be avoided
	buildings can be disassembled and reused	Write and interpret detachable construction	(more difficult to reuse after disassembly)
	after end of service life	details	Detachable construction details
		Prioritise standardised solutions and systems to	
		increase possibilities of reuse	
29	Design products and building structures to	Design building components that consist of	Material passports
	enable reuse and recycling	multiple parts that can be easily disassembled	Modularity to enable easy disassembly
		Enable easy recyclability for the designed building	
		component	
		Design with reuse for the same or different	
		purposes in mind	
		'Legolise' the construction of buildings	
30	Design products and building structures	Design building components so that they are easy	Modularity to enable exchange of (parts of)
	that make repair accessible	to repair by home owners or facility managers	products or materials
			Design strategies to allow for easy repair
			Material passports
31	Design products and building structures	Select materials and technologies that resist	Design strategies for flexible use of buildings
	that can serve a long and useful life, as	damage and wear	Materials that ensure longevity of buildings
	well as stay relevant to residents and	Design for flexible use to adapt to changing needs	
-			

	users	of occupants (e.g. partition walls and systems)	
32	Facilitate discussions and meetings	Apply circular strategies within the firm to serve as	Circular strategies
	between internal team members to	an example	Training strategies
	identify circular opportunities	Provide internal training about circularity topics	(Group) conversation strategies for circularity
		(e.g. about circular procurement)	
		Facilitate open discussions about circularity	
33	Integrate circular economy thinking into	Integrate circular economy thinking into employee	Circular economy thinking for employee
	employee evaluations that are linked to	evaluations	evaluations
	professional compensation	Link circular employee skills to professional	
		compensation	
34	Put in place purchasing guidelines for	Evaluate material suppliers on circular economy	Circular procurement/GPP
	procurement departments	principles and guidelines	Energy Performance Contracting and other
		Setting up purchasing guidelines for procurement	performance-based servitisation models
		Improve procurement further by acting regionally	
		Include other lifecycle phases, such as renovation	
		or dismantling works	
35	Collaborate with industry stakeholders to	Engage in discussions with industry stakeholders	Strategies for promoting greater circularity
	share best practices and act together	to share circular economy best practices	
		Push stakeholders towards greater circularity	
		Identify potential synergies	
		Engage in activities or projects that advance	
		circularity together	
		Establish regional construction networks	
36	Make choice of materials between	Require Environmental Product Declarations	Tender options like bio-based (timber) versus
	different tender options	(EPDs)	secondary (recycled concrete or steel)
		Interpret EPDs	
37	Work together with residents and users to	Organise feedback from consumers in order to	Co-creation strategies
	iointly create products and buildings fit for	improve the product in next applications	

them		
Engage in discussions with construction customers to raise awareness of the circular economy and explore circular opportunities together	Educate residents on sustainable construction and renovation options Provide consumers with reliable data on the environmental footprint of their choices Provide programmes for home owners and users to help people become more circular	Ecolabelling Renovation options for different types of building structures
Engage in discussions with government bodies and policy makers to push for regulations that support circularity	Establish circular construction and demolition criteria Open and engage in discussions with government bodies and policy makers	Public private partnerships Which government bodies and policy makers are relevant to interact with
Participate in government programmes that support and advance the circular economy	Select relevant government programmes Contribute to government programmes for circularity	Government programmes that support and advance circular economy
Work together with the (local) community and engaging them in the company operations	Develop high-value, circular product applications through community collaboration	Strategies to engage people in local communities with company projects Benefit of creating new job opportunities by applying circular strategies in the value chain
Provide building components (e.g. installations, electrical products, partition walls) as a service instead of as a product	Set up a product business model for building components Provide building components as a service Provide services through a subscription plan with regular payment schemes	Strategies for providing building components as a service (e.g. installation company ensures good indoor climate and remains owner of installations) Subscription plans
Offer construction maintenance and repair services with help of service business models	Provide maintenance and repair services to buildings as a service Emphasise a locally skilled workforce to provide services	Service business models
Offer different leasing and rental models	Provide leasing or rental models for buildings and	Leasing models

	to provide access rather than ownership	installations	Rental models
		Recognise and prevent under-use of existing built	Options for multi-use, sharing of spaces, e.g.
		space	co-housing
		Organise multi-use or sharing of spaces (e.g. office	
		buildings used by civil society organisations in	
		evening or weekends)	
45	Incentivise the renovation of currently	Provide reasonable incentives to firms or	What incentives are suitable
	unused buildings	individuals who choose to renovate an unused	Models for incentivisation
		building	
		Set up projects for incentivisation	
46	Apply digital tracking of materials to	Apply digital tracking of materials used in the	Digital material tracking software
	optimise maintenance, demolition, and	construction project	Methods to track materials
	recovery of buildings and components	Provide and gain insights into the materials used	Use of BIM
			On site tracking ID's / RFID
47	Develop and apply material and building	Develop and apply material and building passports	Material passports
	passports	Ensure availability of material and building	Buildings passports
		passports to everyone	Use of BIM
48	Employ a regional construction digital	Set up a regional construction digital marketplace	Digital marketplaces
	marketplace for construction resources	Utilise existing online platforms to enable digital	Methods for setting up a digital marketplace
		marketplace	Peer-to-peer exchange of materials and
		Persuade and incentivise use of digital	products
		construction marketplace by stakeholders	Use of BIM
49	Incorporate circular strategies, archetypal	Incorporate circular strategies into educational	Suitable approaches for primary, secondary and
	circular interventions and case studies	programmes	tertiary education curricula
	into educational programmes (in the	Incorporate archetypal circular interventions into	Suitable approaches for lifelong learning and
	construction value chain)	educational programmes	workplace training
		Incorporate case studies into educational	Distinguish between types of professions in
		programmes	training

50	Provide training about circular	Set up circular procurement training	Circular procurement strategies and methods
	procurement within the built environment	Provide circular procurement workplace training	How to engage trainees with regards to
		Provide guidance to trainees	procurement
		Set up a training agreement	
51	Solidify definitions of circular construction	Explain what circularity means in construction	Key Elements of the circular economy
	by being consistent and using circularity frameworks		Circularity definitions and which to maintain
52	Conduct research about applied circular	Generate knowledge on applied circular strategies	Case studies and meta studies
	construction strategies	in construction by case studies and meta studies	Suitable applied strategies for research
		Analyse effectivity, barriers and successes of	
		applied circular strategies in the construction	
		sector	
		Give informed advice for future applied strategies	
53	Follow developments in the field of	Distinguish and interpret environmental costing	Environmental costing models
	environmental costing models and CO2	models and CO2 taxes by following the right	CO2 taxes
	taxes	sources to remain familiar	
	Educate property/home owners on	Explain potential sustainable construction and	Strategies for educating property/homeowners
	sustainable construction and renovation	renovation options	
	options	Motivate industry and construction clients about	
		renovation options.	
55	Raise awareness about recycled	Raise the awareness of stakeholders about	Recycled construction materials
	construction materials and reconstructed	reconstruction of buildings and recycled	Reconstruction of buildings
	buildings	construction materials	
		Explain the value of reconstruction of buildings	
		and recycled construction materials	
		Motivate stakeholders and break unwillingness to	
		use new construction materials or build new	
56	Install energy efficiency measures	Apply smart solutions to installations	Energy efficiency solutions, e.g. ventilated roofs,

	Employ BIM to get insight into the effects and changes affiliated with upkeep, repair, or improvement of buildings	Conduct draught-proofing in buildings Conduct airtightness testing Apply suitable method for creating airtightness Build with passive design techniques Make use of BIM for upkeep and repair purposes	air quality, insulation, airtightness. Draught-proofing for efficient use of thermal energy Passive design techniques (e.g. passive solar heating, solar collectors like atriums, crossed ventilation, inertia) BIM for repair information
58	Reduce waste as much as possible during production of buildings and components	Reduce waste as much as possible during construction Prepare detailed planning of materials Order just in time Avoid overlong on site storage of materials Incentivize building crew to avoid waste (=don't reward haste) Collect multiple separated waste streams on site	Strategies to reduce waste
	Compile demolition specifications and provide them at final commissioning of the building	Compile clear demolition specifications of the building	Demolition specifications / detachable construction details
60	Assemble modular structures	Modular construction systems and their procedures for assembly Apply removable joints Apply sealants that allow for disassembly (e.g. not glueing them or using PUR or KIT for mounting)	Modular construction systems and their procedures for assembly (incl. prefabricated modules) Removable joints (incl. those made from non-conventional materials, whilst maintaining

		Ensure that connections made are accessible	quality of joints)
			Wall panels, dowels, slot systems etc.
61	Conduct a feasibility study to, if applicable,	Conduct a feasibility study to explore possibilities	Feasibility studies in construction projects
	prioritise renovation, minimise used	of renovation in order to avoid building new when	Statutory requirements for feasibility study
	surface, and minimise the total mass of	buildings can be reused	
	materials to be used	Conduct a feasibility study to scan possibilities to	
		minimise the amount of surface used for new	
		built/renovation project	
		Conduct a feasibility study to scan possibilities to	
		minimise total mass of materials used in the	
		project	
		Ensure that results of feasibility study comply with	
		statutory requirements	
62	Construct building components according	Assemble building components properly	Buildings as a service not as a property
	to service business model	Ensure that building components are properly	Modular construction systems and prefabricated
		assembled as components (e.g. not glueing them	modules
		or using PUR or KIT for mounting)	
		Needs to be specified with more details of	
		craftsmanship on site in order to assemble	
		building components properly	
63	Install renewable energy technologies in	Install solar PV panels	Renewable energy technologies, such as solar
	buildings to generate power or heat/cold	Install heat pumps	panels, heat pumps, waste water heat recovery
64	Maintain and repair built structures and	Maintain and repair built structures and	Repair techniques for buildings and installations
	installations in order to maximise lifetime	installations (incl. renewable energy technologies)	Renovation techniques
		Renovate buildings or parts of buildings to	Renovation of bio-based, non-critical and
		maximise their lifetime	non-toxic materials
65	Disassemble modular structures for reuse	Disassemble modular construction systems	Modular construction systems
		Write and interpret detachable construction	Detachable construction details

	details	
Rebuild existing buildings for a new purpose	Rebuild disassembled buildings Adaptive reuse of existing buildings for a new purpose	Modular construction systems
Apply bio-based, non-critical, non-toxic, and/or reusable products on site whilst maintaining material efficacy	Apply bio-based, reusable, non-critical and/or non-toxic materials at the construction site Enact measures that optimise material use to strive for material efficacy Collect leftover materials	Applications and characteristics of different bio-based materials, what to keep into account while applying them Alternative forms of concrete Applications of reusable and/or recyclable materials General knowledge about measures that optimise material use in construction, such as 3D printing
Organise logistics and storage of secondary materials	Collaborate with resource hub(s) Include data and knowledge about materials in passports Prioritise local storage and distribution	Resource hubs/ material banks
Source local and lightweight materials if possible	Source local and lightweight materials	How to work with resource hubs or materials banks
	Provide information about how and when to maintain the building Create guide for building users	When and how built structure at hand needs regular checks and repair Any kind of documentation as guideline for users
Operate the building in a clever manner that suits the current situation best, looking further than solely the original design to optimise sustainability and circularity	Operate the building while considering post-occupancy evaluation, changes in use, and the search for energy and material savings during operation Adapt building operation to changes in use and context	Post-occupancy evaluation (incl. evaluation during use phase of building) Options for energy and material savings during operation

	Conduct post occupancy survey and analysis	Conduct post occupancy survey and analysis	The importance of post occupancy survey and analysis (also during operation) The purpose of this is to provide feedback to design practices of design professions
	Assess quality of materials to be reused (audit of waste)	Conduct effective end-of-life assessment about used materials Make decision about reuse of materials Share feedback about quality to constructor and architect Distinguish between high-quality and low-quality reuse	If applicable, connect end-of-life assessment to purpose of the building that the materials are to be used for
	Trade secondary materials and products on digital marketplaces	Employ (regional) digital marketplace to trade used construction materials that have been selected for reuse	How to use digital marketplaces to sell (transformed) used materials
	Redefine building regulations to incentivise circular approaches in construction	Redefine building regulations to incentivise circular approaches in construction	What the existing building regulations are and how they interact with circular approaches
81	Comply with applicable (national/local/EU) legal requirements	Comply with applicable legal requirements	What are the relevant legal requirements (e.g. CPR, functional requirements of building walls) National and regional legal requirements
	Organise and provide insurance and guarantees for reused materials to buyers	Organise insurance and guarantees for reused materials Provide insurance and guarantees for reused materials	Material passports
	Increase (access to) understanding of biobased construction materials	Conduct research about quality and characteristics of biobased materials Feedback material research results to established construction requirements	Construction requirements

		Experiment with materials to innovate and	
		discover new sustainable methods of construction	
84	Use drones and imaging technologies to	Use drones and imaging technologies to collect	Drones and imaging technologies for collecting
	collect data about building and analyse	data about building and analyse building for	data in construction projects
	building for renovation	renovation	

3. Approach

For development of the task-based qualification framework, a methodology developed within the NEWCOM project, which was later fine-tuned in several other European H2020 projects, has been used. This paragraph will explain the origin, validation, and added value of the methodology, as well as how it works. Additionally, resources used as input for the qualifications are clarified below.

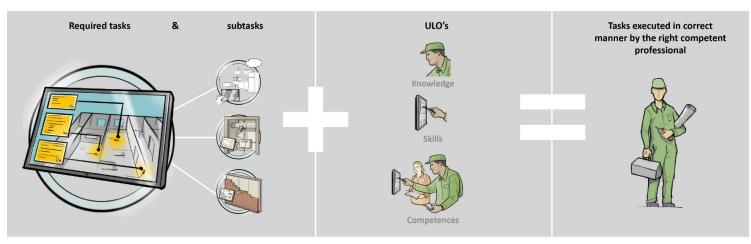


Figure 6. Overview of the methodology

3.1. Task-based qualifications

The methodology for compiling task-based qualifications used in BUS-GoCircular was first established in the so-called NEWCOM project. NEWCOM is a European-wide project in which training schemes for construction workers and professionals are developed, as well as a basis for the recognition of these schemes (e.g. by means of a competence database).⁶

The purpose of the methodology is, on the one hand, to decide what specific tasks and subtasks a professional should tend to (hence 'task-based'). On the other hand, each subtask is linked to a unique Unit of Learning Outcome (ULO). ULO's consist of a competence, skills, and knowledge element. Altogether, information needs to be added about which professionals are needed for each subtask. In connecting subtasks to

⁶ Newcom: Newcomtraining. Österreichische Energieagentur. https://www.newcomtraining.com/newcom

corresponding professions, one can decide which learning goals members of a profession should possess and thus what learning outcomes need to be acquired.

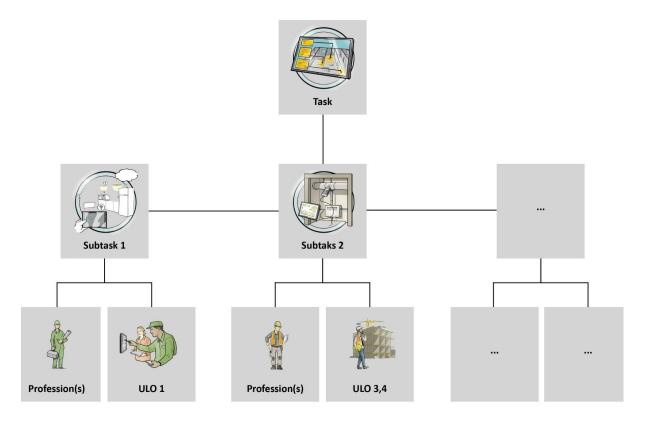


Figure 7. Relationship tasks, subtasks, ULOs and professions

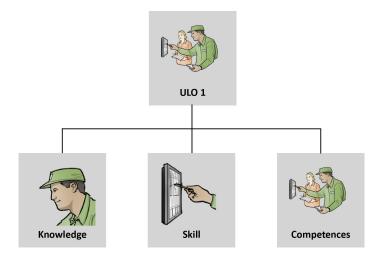


Figure 8. Elements of ULOs

All ULOs are to be stored in a database of the BUILD UP Skills advisor-app, where they can then easily be labelled with locations of existing learning content, for example training and

upskilling initiatives. If a certain competence is applied to multiple (sub)tasks, the ULO has to be written only once.

The outcomes of a set of task-based qualifications enables decisions about what exact profile professionals should possess. It can help with standardising certification, developing new training materials, and connecting to micro-learning and micro-credentials.

In BUS-GoCircular, the task-based qualification framework for circular construction skills will be used in two ways: a) to expand the repository of the BUS Advisor app with the Unit of Learning Outcomes and associated learning content in the Catalogue, and b) to work on future tasks within the BUS-GoCircular project, by using the qualifications as inputs for developing Train-the-Trainer and mentoring programmes.

3.1.1. Previous applications

The methodology for compiling task-based qualifications has been finetuned and validated throughout the course of several large-scale European wide projects, apart from the previously mentioned NEWCOM project. Some examples are listed below.

- Before NEWCOM, in projects PROF/TRAC and BUStoB, work was done on qualifications for (interdisciplinary) skills for professionals and craftsmen in the construction and installation sectors. However, the qualifications developed here were not yet task-based.
- Building on the qualifications mentioned from the PROF/TRAC and BUStoB projects, NEWCOM took the qualification methodology, and made major improvements to it.
 From now on, learning outcomes were based on tasks and subtasks.
- In other projects, task-based qualifications were implemented. BIMplement, TripleA-reno, and BUSLeague. This ensured further validation of the methodology.
- Besides applications in EU projects, the method is applied in consultancy projects based in the Netherlands. There, the composition of task-based learning outcomes takes place for training purposes. Examples of project topics from the past are heatpumps, PV panel installation, infrared heating installation, heat network installation, fusebox aggravation, and installing charging stations for electric vehicles.

• In the future, the task-based qualifications method will, besides BUS-GoCircular, also be applied in the ARISE and SEEtheSkills projects.

3.1.2. Added value

The result of applying the methodology for compiling task-based qualifications is a set of hands-on, usable learning outcomes that correspond to relevant professions. The method is useful for reaching recognition of skills across countries. Task-based descriptions help steer users' focus towards the actual competences of professionals.

Additionally, the opportunity for recognition of skills provided by task-based qualifications can be connected to micro-learning and micro-credentials. Development of micro-credentials can be further facilitated, and transparency in terms of what they represent can be enhanced.⁷

In the past, the task-based approach has proven to be feasible to harmonise the qualification at EU level with adjustments for national specific elements, in order to enable mutual recognition.

3.2. Knowledge input for the Circular Construction Skills Qualification Framework

In this paragraph, the developed content of the circular construction skills qualification framework will be explained. In general, a focus on applying principles has been dictated. When applying circularity in construction, professionals will rarely have to learn new skills starting from the very beginning; they will need to make adjustments to their current way of working, and this is what mainly needs to be considered in the qualification framework.

The main foundation of the qualification framework was the BUS-GoCircular Framework for Circular Interventions. More information about this can be found in paragraph 2.2.1. According to the project task description (T2.3), the qualification framework should consist at least consider:

- Circular economy strategies (from the 8 Key Elements)
- Circular principles (such as sustainable materials, modular systems, business models, etc.)

⁷ Cromwijk et al., 2022

- Circularity applied to Energy Efficiency (EE) and Renewable Energy Resources (RES)
- Digital skills needed for implementing circularity, including required BIM maturity levels
- All phases in the construction process and all actors involved in the value chain.

As to the obligatory inclusion of digital skills, a subtask and corresponding ULO for working with BIM has been included. BIM-maturity and its applications for circularity will be further elaborated in H2020 sister project *ARISE*.

3.2.1. Framework for circular interventions

In BUS-GoCircular Task 2.1, the consortium has created a Framework for circular interventions in the construction value chain. As mentioned, this was the main foundation of the current deliverable.

The Framework for circular interventions was based on the existing Key Elements of the Circular Economy framework.⁸ The Key Elements were developed to define a common language for the circular economy. There are 8 elements that consist of; core elements, which deal with physical flows directly, and enabling elements, which deal with creating the conditions or removing barriers for a circular transition. For each element, 25 strategy groups in total are identified. For example, the first key element (*prioritise regenerative resources*) is connected to three strategy groups: regenerative materials, regenerative water, and regenerative energy. These 25 strategy groups in turn form the basis of how circular strategies for the construction sector specifically have been identified in Task 2.1.

The circular construction interventions identified for each strategy group were then connected to relevant professions for each stage of the construction value chain. It then becomes clear what job roles are involved in carrying out the work activity needed to implement the circular strategies. See Figure 1 for a fragment of the framework.

⁸ Circle Economy. Key Elements of the Circular Economy. <u>Key elements of the circular economy -</u> <u>Knowledge Hub | Circle Lab (circle-lab.com)</u>

Core key element	Strategy group	Approach to circular construction	Plan*	Procure	Construct	Operate	EoSL
Prioritise regenerative resources	Regenerative materials	Build with sustainably sourced wood Build with hemp, seaweed, cork, bamboo, earth, etc. Use alternative (bio)forms of concrete Reduce size of building envelope and floor space e.g. through shared and multifunctional building spaces Use of reusable or recyclable materials, e.g. glass, plasterboard Use prefab to avoid material losses on site Use non-toxic construction materials, e.g. alternatives to anti-flame retardants used on wood Avoid the use of CRMs for construction e.g. natural rubber Lightweight design and 3D printed building materials Build with sustainably-sourced agricultural residues, e.g. straw / sheep's wool as insulation	AR MS CE EE UP AM C	MS PM	C CE ME SS Br II FM BA	FaM C CE ME SS Br II FM FW R WI BA	DeA DeL

The Framework for circular interventions has been used to compile the qualification framework in order to make maximum use of existing strategies and current successful interventions in the field. It is used to understand what practical actions exist in circular construction and then convert it to the tasks and subtasks one needs to carry out to implement circular strategies. Subsequently, it became straightforward to link subtasks to professionals who will be executing them in practice.

3.2.2. Additional resources

Alongside the use of the BUS-GoCircular Framework for circular interventions as a foundation for the qualification framework, several other resources have guided the development of the task-based qualifications. This paragraph will focus shortly on the inputs from sister project BUSLeague, and the BREEAM-NL sustainability assessment method

BUSLeague

In H2020 project BUSLeague, a set of qualifications for cross-craft Energy Efficiency (EE)-skills has been compiled. This compendium has informed the writing of EE- and RES-relevant learning outcomes in the qualification framework.

BREEAM-NL

BREEAM is a sustainability assessment tool. Indicators for circular buildings have been proposed in a report from 2018⁹. A list of indicators has been used as a check for completeness of the qualifications. This check has indicated the addition of learning outcomes with regards to conducting feasibility studies, making use of the Material Circularity Indicator tool, considering VOC emissions, and providing demolition specifications.

4.Process

Insight into the process of the current BUS-GoCircular task provides transparency about the qualification framework. During the process, prominence was given to consortium collaboration and the involvement of expertise.

4.1.1.Collaboration and use of expertise

The first steps of developing the circular construction skills qualification framework were made independently by the task leader. During the second consortium meeting of the project, the first draft was then presented to the consortium, as to which some feedback was provided by partners.

After CM2, weekly meetings were organised, to which half of the partners attended each session. Thus, there was a 'Tuesday team' and a 'Thursday team', to make sure each partner can share their expertise to include relevant items in the framework. These meetings took place for four weeks, after which a final draft of the qualification framework was finalised. Collaboration was seen as a necessary part of the process, since feedback from people with different perspectives and backgrounds can help in developing a high quality qualification framework.

⁹ Circle Economy et al. A Framework for Circular Buildings: Indicators for Possible Inclusion in BREEAM. 2018.

https://www.metabolic.nl/publications/a-framework-for-circular-buildings-breeam/

An essential element of the task-based qualification methodology is expert consultation. This will take place during the next step of the project; by inviting focus groups with experts as part of the market validation in Task 2.4.

Additionally, as part of the process, BUS-GoCircular Task 2.2 (skills mapping) has been used as a test to ensure all relevant components were included.

4.1.2. Decision-making

During the development process, the decision has been made to classify main tasks as the 8 key elements. Minor alterations have been made to key elements. Namely, *prioritise regenerative resources* is named *prioritise regenerative and efficient use of resources*. Furthermore, considering the stages of the built environment value chain has prompted the inclusion of a new main task: *Assemble/construct for the future*. The construct phase made the partners realise that, for example, it is not enough to merely *design* modular construction solutions; they also need to be *constructed*.

From consortium partners' experience in the field, some additions were made to the subtasks, for instance: organise logistics and storage of secondary materials; assess quality of materials to be reused and; increase (access to) understanding of non-conventional construction materials.

Few information was deleted in the qualifications, as seen from the starting point of the Framework for circular interventions. However, the subtask *ensure energy recovery from waste* was deleted, because this was deemed a last resort option that should not be encouraged. Within the same line of thinking, in ULOs 19 and 22, information has been added that transforming waste products/materials into lower value products should be regarded as a last resort option; it is preferable to retain the value of materials. Moreover, it is of even greater relevance to a circular economy to keep materials in use for as long as possible through practices that extend building lifetimes, like durable design, repair, and renovation. The importance of these practices should come to the fore in the finaled framework.

5. Future developments and applications

The qualification framework is to be applied to the specified BUS-GoCircular focus of multifunctional green roofs, façades, and interior elements. Then, it is to be approved by the consortium and validated by stakeholders at national level (in Task 2.4). In the meantime, focus groups for market validation may provide input for necessary alterations.

After approval, the BUS-GoCircular consortium will use the qualification framework, together with the framework for circular interventions (Task 2.1), and the skills mapping results (Task 2.2), for further tasks in the project. Train-the-Trainer and mentoring programmes will be developed, as well as fundamentals training packs. Lastly, learning outcomes from the qualification framework will be added to the BUILD UP Skills Advisor app, in order to increase the recognition of circular skills in construction, and to direct professionals and workers to learning and upskilling that is right for them.

6.References

BUS-GoCircular. D2.1 Framework for circular interventions in the construction value chain.

2022.

https://busgocircular.eu/framework-for-circular-interventions-in-the-construction-value -chain/

Circle Economy. Key elements of the circular economy.

https://knowledge-hub.circle-lab.com/circular-jobs-initiative/frameworks/9?n=Key-ele ments-of-the-circular-economy

- Circle Economy, 2021. Three ways circular construction can strengthen biodiversity efforts. <u>https://medium.com/circleeconomy/three-ways-circular-construction-can-strengthen-b</u> <u>iodiversity-efforts-bfc632061715</u>
- Cromwijk, J.; Poort, C.; Cerovšek, T.; Moro, A. and Breen, M. From insight into energy transition maturity to powerful task-based cross-sectoral upskilling. 2022. https://proceedings.open.tudelft.nl/clima2022/article/view/180

Newcom: Newcomtraining. Österreichische Energieagentur. 2022.

https://www.newcomtraining.com/newcom

European Commission. Critical raw materials. 2022.

https://ec.europa.eu/growth/sectors/raw-materials/areas-specific-interest/critical-rawmaterials_en

Trinomics, 2018. Quantifying the benefits of circular economy actions on the decarbonisation of EU economy: Final report.

http://trinomics.eu/wp-content/uploads/2020/04/Trinomics-2018-Quantifying-the-bene fits-of-circular-economy-actions-on-the-decarbonisation-of-EU-economy_final-report. pdf

7. Appendix I - Professions acronyms

Ambition setting and	Policymaker / Policy advisor	PA
governance	Green Public Procurement (GPP) advisor	GPPA
	Asset manager	
Asset management	Real estate investor	АМ
Urban planning	Urban planner	UP
	Architect	
	Interior architect	
	Architectural technician	
	Designer	AR
	Landscape architect	
Architecture	Green roof / green façade designer	LA
	Civil engineer	
	Construction engineer	
	Structural engineer	CE
Civil engineering	Façade design engineer	FDE
	Electrical engineer	
	ICT engineer	
Electrical engineering	Building automation engineer	EL
	Mechanical engineer	
Mechanical engineering	Energy engineer	ME
Environmental		
engineering	Environmental engineer	EE
	Facility manager	FaM
	Building operator	BO
	Data analyst	
	BIM programmers, BIM designer	
	Software engineer	
Building management	3D image technician / engineer	DA
	Cost engineer	
	Project manager and coordinator	
	Quality control and assurance	
	Quantity surveyor	С
	Health and safety (H&S) advisor	
	H&S inspector	
	Site supervisor	HS

	Site surveyor	
	Land surveyor	SS
Surveying	Building surveyor	BS
	Procurer / purchasing manager	
	Procurement officer	PM
Financing and	Project developer	PD
procurement	Material scout	MS
	Building energy consultant	
Energy performance	Energy assessor	BEC
	Sustainability consultant	
Sustainable building	Sustainability assessor	SC
	Conservation Officer	
Conservation	Conservation scientist / ecologist	со
	Bricklayer	
	Stone-layer, cutter and mason	Br
	Insulation Installers	11
	Carpenter	
	Joiner	FM
	façade worker	
	Plasterer	FW
	Roofers	R
	Gardener (roof and façade)	
	Interior planter / landscaper	
	Arboriculturalist / Horticulturist	Gd
	Window installer / glazer	WI
	Wood manufacturer and finisher	
	Pre-fabricated building assembler	
Construction - building	Truss assembler	BA
	Plumber	Ρ
	Electrical installer and technician	El
	Renewable energy systems installer	
	(electric)	RESI
	Renewable energy systems installer	
	(thermal)	RWT
	Heat pump installer	HPI
	Ventilation installer	
	Air conditioning installer	VI
	Repair and maintenance operative	
Construction - Technical	Maintenance planner	
installations	Safety maintenance operative	RM
Demolition and	Demolition / deconstruction labourer	DeL

deconstruction	Demolition / deconstruction supervisor		
	Site analyst		
	Deconstruction auditor		
	Urban miner	DeA	

More information about the project

http://www.busgocircular.eu/

Follow us

https://twitter.com/BusGoCircular

https://www.linkedin.com/company/busgocircular

Colophon

Copyright © 2021 by BUSGoCircular consortium

Use of any knowledge, information or data contained in this document shall be at the user's sole risk. Neither the BUSGoCircular Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained. If you notice information in this publication that you believe should be corrected or updated, please get in contact with the project coordinator.

The authors intended not to use any copyrighted material for the publication or, if not possible, to indicate the copyright of the respective object. The copyright for any material created by the authors is reserved. Any duplication or use of objects such as diagrams, sounds or texts in other electronic or printed publications is not permitted without the author's agreement.

